
PHYS 2212    Lab Exercise 04:  Work, Potential Energy, & Electric Potential

PRELIMINARY MATERIAL TO BE READ BEFORE LAB PERIOD

I. Review of Work:  The idea of work was introduced in Physics I as
being a measure of the amount of energy transferred to an object,
occurring as the result of the object experiencing a displacement  (that
is, a change of position) while under the influence of some force.  We
calculate the work that is done via a dot product: never forget that
when you are computing work, you are combining the vectors in such
a way that a scalar quantity results.  (This is why the “dot product” is
often referred to as the “scalar product”.)  If the force that acts is
constant throughout the displacement (that is, it’s magnitude and
direction are the same at every point passed through by the particle)
then we can write:
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On the other hand, if the force varies from point to point as the object moves about, the expression above will
not work.  Instead, we must break the displacement up into sub-displacements, and compute the work along
each sub-segment separately, and then add the results together.  (We can do this because a dot product is still a
“linear product”, and satisfies the distributive rule: the sum of products is equal to the product of the sums.)  We
thus write:

Generally speaking, though, we can’s stop there; usually, we have to reduce our sub-segments down to
infinitesimal size.  This is actually a good thing, since it allows us to deal with curvy paths, in addition to
straight-line segments.  Such an infinitesimal sub-
segment would be labeled as , and would point
tangent to the curving path at every point along it.  The
advantage of using infinitesimal sub-segments is that
any particular sub-segment will be so tiny that the force
can be treated as being effectively constant over that
region, and we can write:

All that remains is to sum up all of these infinitesimal
bits of work, which means—you guessed it—an
integral:
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Thus, the most general expression for the work done by a given force is a line integral over the path of
displacement (a.k.a. a “path integral”).

The most important thing to keep in mind about this expression (and with it, the less general expression for
work by a constant force) is the dot product—the relative directions of the force and displacement vectors are
crucial to understanding work.  When the vectors are exactly parallel, the dot product gives an overall “+1”, and
positive work is done.  In fact, as long as the angle between the two vectors is less than 90°, you will always
obtain a positive value for the work.  On the other hand, when the relative angle exceeds 90°, the dot product
will return a negative value, and we say than negative work was done.  Pay close heed to the corollary of all
this:

• When the angle between the force and displacement is exactly 90°, the work done by
the force on the object is exactly zero.



II. Work and Energy:  Having established a definition of work, we next recognize that it provides us with a
means of measuring energy transfers to the object from the source giving rise to the force (or vice versa).  That
is: when positive work is done, we say that the force has given energy to the object; when negative work is
done, the force has removed energy from the object.  This transfer of energy can be manifested either in terms of
the object speeding up or slowing down (a change in kinetic energy) or in terms of the object storing the energy
in some manner (a change in potential energy).

More specifically, we recognize that for certain, special types of forces (conservative forces), the work done as
the object moves between two particular points will always be completely independent of the exact route taken
(that is, any  two paths between  the starting and  ending  points will always give the same total work).  This is
advantageous for a number of reasons: first, it makes the “work
integral” much easier to compute, since one can always choose an
optimum path between the endpoints that avoids the messier aspects of
computing a dot product.  (In a nutshell: you choose a path consisting
of distinct sub-segments, such that on any given sub-segment, you are
either displacing parallel to the force—dot product = +1—or else
perpendicular to the force—dot product = 0.)  Secondly, when a force
is conservative, it becomes possible to account for the “non-kinetic”
energy of the particle, simply by keeping track of where the particle
“is”.  This “positional energy” is what we mean when we talk about
potential energy.
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So, when a conservative force acts, we say that the “work done by the force” simply measures the exchange of
kinetic energy for potential energy (or vice versa).  The standard convention for this transfer is that positive
work increases the kinetic energy and decreases the potential energy:

On the other hand, for non-conservative (NC) forces, we cannot talk about some sort of “potential energy
function”, but we can still interpret the work that is done by these forces as a kinetic energy transfer:

Thus, if we add together the work done by all conservative and non-conservative forces combined, we obtain
the “Work-Kinetic Energy Theorem”:

Moreover, when multiple forces (conservative and non-conservative) act, we can find that in some situations the
object effectively acts as an “intermediary” for allowing the “energy provided by the NC force” to be converted
directly into “potential energy of the conservative force”.  The clearest example of this is the process of lifting
an object upwards at steady speed, against the force of gravity.  To do so, an “external agent” (you) must exert
an upward force (which is “NC”), while at the same time the gravitational force acts downward.  Since the
speed of the object is constant, there is no net acceleration, and we can thus conclude that the lifting force and
the gravitational force must be exactly equal in magnitude.  The lifting force will be doing positive work (force
and displacement are parallel), which would tend to increase the object’s kinetic energy.  However, at the same
time, the gravitational force is doing the exact same amount of negative work (force of same magnitude, which
is opposite to the displacement).  The negative gravitational work effectively removes the kinetic energy added
by the lifting force as soon as it “arrives”, and converts it into stored potential energy of the gravitational field.

We can account for these sorts of situations by establishing a “General Work-Energy Theorem”, which lets us
deal with all of the possible “energy rearrangements” due to conservative and NC forces at the same time:

This tells us that “work by a NC force” can either be manifested as an increase in kinetic energy, or as an
increase in potential energy, or perhaps a “little of both”.



III. Electrostatic Work & Electrostatic Potential Energy:  It turns out that the electrostatic force described by
Coulomb’s Law is a “conservative” force—which has some important consequences.  For starters, we must
recognize that whenever an electric charge is moved around within a region containing an electric field, work is
done on the charge by the electric field.

  

             

              

Moreover, the conservative nature of the field allows us to choose any path for this calculation, which can
greatly simplify the details of computing work in certain circumstances.  As before, the “smartest” way to go is
to choose a path for the charge consisting of segments either parallel or perpendicular to the direction of the
field.  In addition, we recognize that an “Electrostatic Potential Energy Function UE” exists—and once we’ve
“worked out the details” of this potential energy function for a particular electric field, we can proceed to make
energy calculations without having to resort to the work integral!  That is, we can perform a great deal of
calculations using the principle of Conservation of Mechanical Energy:

The key to figuring out the “appropriate UE”for a particular field is to note that positive electrostatic work
implies a decrease in electrostatic potential energy (and vice versa).  So, we arbitrarily choose a location “0”
that we want to be the “zero PE” location, and we compute the PE at any other location by figuring out the
work that is done during the move from 0 to the other location:

 

   

   

IV. Electric Potential:  The idea of electric potential energy is certainly convenient, but it does have a major
drawback:  the amount of potential energy involved in any displacement is always necessarily dependent upon
the amount of test charge q that has been moved!  That is unfortunate, because the whole point of electric fields
is that their properties exist even in the absence of test charges.  So, we seek to find a way of characterizing the
“energy content” of fields in a manner that is independent of the presence or absence of test charges.  The
process is exactly parallel to what was done in the Force →  Field transition: we will define the “potential
energy per unit test charge” as being the “physically relevant quantity”.  It is to this end that we define the
Electric Potential, V:

or



It is important to note that “Electric Potential” is not the same thing as “Potential Energy”—these are two very
different quantities.  In particular, the electric potential is something that “exists” (i.e. can be measured) at every
point in space within an electric field—regardless of whether or not a test charge is there to “feel” it. On the
other hand, potential energy can only be discussed if an actual test charge is placed within the field.

Understanding what “electric potential” actually means can be very tricky for many students.  The standard
mistake that “newbie” physics students make is to confuse the units for this quantity with the thing itself.
Electric potential is measured in “volts”, which motivates students to drop the reference to potential entirely,
and talk about voltages instead.  Danger, Will Robinson!  This misconception encourages students to start
thinking about “volts” as being “real things” that can move around the way test charges might.  (“Well, gee…
there are nineteen volts going through this resistor, which means that….”—Not hardly likely, Buster!)

The best way to get a “feel” for what electric potential represents is to think of the analogous quantity of
“gravitational potential”— which is to say “gravitational potential energy per unit test mass”.  If a mass m is
placed in the Earth’s gravitational field (and presuming that we’re near the Earth’s surface, wso that the
gravitational force is constant), we can express the potential energy of the test mass, when at height h above the
ground, as:

We can then to compute the PE per unit mass, and call this the Gravitational Potential Γ (Why Γ?  Well, I can
use any symbol I want, and the greek version of “G” seems well-suited to the task…)  We then have:

Thus, the gravitational potential is really just a measure of “height in the gravitational field” (albeit with an
extra overall scale factor of g).  That is, the higher you are, the greater your gravitational potential, and vice
versa.  (Why not just use gravitational potential energy, and save ourselves from this mess?  Because two
different masses at the same height will have different values for Ug!)  We could then “map out” the Earth’s
gravitational field by assigning a “potential” to each point in space, and this would be exactly equivalent to
creating a topographic map of elevations.  Of course, the whole “gravitational potential” step could have been
skipped entirely—we could have started by simply mapping out the heights “h” in the first place.

With electric fields, the process is equivalent, including the final step in which we interpret what “potential”
means: the electric potential is effectively an assignment of “electrostatic height” to each point in space within
an electric field, creating an effective “topographic map” of the field.  The field will then exert forces on
positive test charges that cause them to move from high potential to low potential (just like masses feel a
gravitational force from high elevations to low elevations).  The exact direction of that force will be in the most
direct route to lower potential—which is to say, along the “path of steepest descent” on the topographic map.
(In a gravitational field, “steepest descent” would be a fancy way of saying “straight down”.)

Of course, we should also be careful to recognize that negative test charges within a field will always
experience a force opposite to what positive charges would feel.  Thus, we conclude that negative test charges
in a field will feel a force directed from low electric potential to high electric potential—and that force will be
along the shortest and most direct route to higher potential (“straight up”).  In other words: negative charges
naturally “fall” from low electric potential to high electric potential, along the “path of steepest ascent” on the
topographic map.  We would have to do external work, by forcibly pushing such a negative charge, if we
wanted to make it move to lower potential—and in the process, of course, we would be increasing its potential
energy.

With this perspective, it is perhaps easier to see why the phrase, “there are nineteen volts going through this
resistor” is, well, just plain silly: “voltages” are effectively a measure of height differences between two points
in space (or between two points in a circuit).  Height differences don’t “go” anywhere.  (Have you ever seen
“nineteen feet” go down through a stairwell?  Of course not; the statement is semantically ill-posed—unless
you’re talking about nine people and a peg-legged pirate.)  You would say, instead, “anything that moves
through the stairwell will lose nineteen feet of elevation” (or gain it, or course, depending upon the direction of
travel).  The same semantics holds true for circuits.  The “voltage” that one talks about is a measure of the
“electrostatic elevation change” that anything experiences when it moves between the two points in question.


