PHYS 2212 Lab Exercise 03: Gauss’ Law

PRELIMINARY MATERIAL TO BE READ BEFORE LAB PERIOD

Counting Field Lines: Electric Flux

Recall that an electric field (or, for that matter, magnetic field) can be difficult to visualize, since the only thing we
can see is its effect on charges. To aid in the visualization process, we introduce the idea of a “Field Map” which
represents the field in terms of a set of continuous, directed “lines of force” or “field lines (FL)”. For electric fields
in particular, the basic rules for setting up the correct field map for a given collection of point source charges are as
follows:

1. Field lines always begin on positive charges and end on negative charges. The number of
field lines so constructed should be proportional to the magnitude of the charge.

2. In any particular region of space, the magnitudes of the electric field vectors are directly
proportional to the “density” of field lines in that particular region.
(Note that “field lines” and “field vectors” mean different things...)

There are, of course, other rules as well, but we are not interested in them here. Refer back to the relevant section of
the textbook if you’re interested. For present purposes, we simply note that the two rules above essentially describe
a book-keeping process, where the counting of field lines conveys useful information, albeit of a qualitative nature.

If we wish to be more precise and quantitative, we almost immediately run into some
trouble, and the name of that trouble is “artistic license”: since a field map is mainly
meant to convey an idea of the “shape” of the field, there are no hard-and-fast rules A
about how many field lines must be drawn in a particular circumstance. Put in other )
words, an individual needs to draw only as many field lines as he or she feels
necessary in order to get a “feel” for the field.

For example, if the field of a +1.0 nC point charge were being drawn, a physics prof. or a math expert might be able
to get away with drawing a field map using only four field lines, as shown above.

On the other hand, a less experienced Tech student might need to draw twice as many field lines (below left) before
he or she feels “comfortable” in understanding what his or her drawing represents. Of course, it doesn’t end there.
A really super-duper clueless person (such as a UGA student) might need to draw a lot more field lines before
reaching any sort of comfort level with his or her field map (below right).

Who’s right? All of them, of course. As long as each one sticks

with their chosen “# Field Lines per unit charge” ratio (i.e. 4 FL
per nC for the prof., 8 FL per nC for the Techie, and fifty-gajillion

+\ FL per nC for the UGA student), they will all be able to construct

valid field maps in subsequent sketches, and be able to draw
qualitative—and even some crude quantitative—information from
their sketches.

The problem, though, is that these sketches are not cross-compatible. It would be nice to have a way of “counting
FL” that is not dependent upon the “scale” chosen for our field map. This is particularly important for the next stage
of our analysis: drawing accurate quantitative information about field magnitude from such a map. To do so, we
will need to develop a careful numerical measurement for “Number of FL” (which everyone can agree upon), and to
establish a more rigorous definition of what we mean by “density of FL”, in Rule 2, above.



We will begin by establishing the following meaning for the phrase “density of field lines”:

The density of field lines is measured by counting the number of FL which pass through some surface of total
area A, provided the area is oriented to be perpendicular to the field lines. We would refer to such a surface as
a cross-sectional area, and denote it suggestively as: A,.

It is important at this stage to choose a perpendicular surface for the purpose of counting—after all, if the surface is
parallel to the field, FL do not cross through the surface; they merely skim along one side or the other. For a
surface of given area A, the maximum number of FL crossings will occur when the surface is oriented to be
perpendicular to the field —and that’s what we want (at least, for now...).
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A surface parallel to the field is
A surface perpendicular to field An angled surface intersects fewer “skimmed” by the FL, but none of
intersects the maximum number FL. them actually cross from one side
of FL. to the other.

Note that it is also possible to deal with non-uniform fields, in which the field lines curve, simply by allowing the
surface in question to curve as well—in such a way that at every point on the surface, FL cross at right angles. In
this situation, the “cross-sectional area” is not that of a flat surface—so
we can’t simply write it as “length x width” or as “m x (radius)*”, but
we can still represent it by the symbol “A,”.

Now, presuming that we can count the number of FL which cross the
surface, we can express the “density of FL” specifically as being the
surface density of FL (i.e. number of FL per unit area):

Density of FL = #FL
Ay

/» Of course, this definition is still not “cross-compatible”, because the

. . number of FL in the numerator will depend upon how many FL we’ve
Surface is constructed in such a way that h to d . field But k . ind that th |
it is perpendicular to every FL which | © czsen o draw in our field map. But keep in mind that the only reason
intersects it. we’re really interested in computing the density of FL is to make a
calculation of the field magnitude, by invoking Rule 2:

= FL
|E| o Density of FL = #FL
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Remember that both |E| and AL are mathematically “well-defined quantities—it is the pesky “# FL” in the
numerator that is a problem. So, let’s just re-arrange the expression to put the “known stuff” together on one side:

#FL < |E|- AL

The right hand side of this expression is something that everyone can agree upon, regardless of how many field lines
they have chosen to represent in their diagram. As a result, we will use this product as the basis for establishing a
“scale-independent” measurement process for counting field lines that cross a surface. We will refer to this
measured quantity as electric flux, or simply flux. Never forget that,—at it’s heart—flux is describing a book-
keeping process, in which we are effectively counting the number of FL crossing a surface.



Flux: A Formal Definition

Having laid the conceptual groundwork for why we introduce the idea of flux, let’s look more closely at a precise
mathematical definition. Note, too, that the examples and “Tactics Boxes” in section 27.3 of the text are highly
relevant (and informative) here, so you may want to devote some time to reviewing them, as well.

We start by recognizing that in all the preceding analysis, we were freely choosing our surface as we wished, in
order to figure out the qualitative relationships involved. In general, however, we will often face circumstances
where we are given a particular surface, and are asked to compute an expression for the flux through that surface
(equivalent to the number of field lines crossing the surface). So, our “definition so far” should be viewed only as a
“special case”:

Flux through a surface perpendicular to the field:

Reviewing what we’ve done so far, suppose that we are given a particular
surface such that at every point on the surface, the field is directed L to the
surface. Using the symbol “®” to represent flux, we can immediately write:

®=|E|-AL
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This expression works because the electric field magnitude is equivalent to the
“FL surface density” (by Rule 2), and so we are really just writing the
mathematical equivalent of:

Total “stuff” = (“stuff” per unit area) x (total area under consideration)

Of course, just as with any other density function, we must be wary of situations
where the density is varying over the region being considered. Such cases

require us to use integration methods, and such will be the case here. In
considering flux, this means that if the field magnitude varies over the surface, %—i
we must proceed by breaking the surface into subregions of area dA |,
computing an expression for the flux d® through a single, generic subregion,

and then summing over all subregions. In the limit where our sub-regions
become infinitesimal, 84, — dA |, and our sum becomes an integral:
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Admittedly, writing out this integral in its full, gory detail, and evaluating it can often be a messy process. For now,
let’s just recognize the conceptual idea that a varying electric field magnitude can be handled by breaking the
surface into subregions, computing the flux through each subregion, and summing. The success of this process
hinges on a crucial property of flux:

* Flux is an additive scalar quantity. That is, ® is a number which has no vector direction
associated with it. Moreover, the total flux through two or more surfaces is the simple
mathematical sum of the individual fluxes computed through each of the surfaces separately.

This result can be justified simply by remembering that flux is effectively measuring a number of things
(specifically, number of FL crossing a region), and as such, it should combine the way that simple numbers do.

Note, too that the units of flux will be the units of (field) x (area) = (N/C)-(mz) = N-m?/C. This may seem a bit odd,
when we recall that it is supposed to be representing number of FL. After all, no sensible person would ever say, “I
counted how many field lines crossed this surface, and I found that number to be 4.23 x 10” N'-m*/C.” Sounds
goofy, huh? Just remember that technically, “flux” doesn’t really equal “#FL”, but is instead intended to be
proportional to #FL, using a well-defined and mutually agreed-upon proportionality constant that everyone uses.




Flux for surfaces which are not 1 to the field: A

Let’s make it easy on ourselves, and assume that we are dealing with a i AN
flat surface. However, let’s assume that the surface in question is not — — +—N\ — N\ \ ______
aligned in a convenient orientation. It should be clear, given our earlier \ T\
work, that the flux through this surface should be less than it would be for \ -
the perpendicular surface, simply because the act of “tilting” the surface / D
away from the perpendicular would effectively reduce the cross-sectional
area of the surface, and decrease the number of FL that would cross it’s
reduced “footprint”.
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Before we try to analyze how the flux depends on the tilt angle, it will be useful to digress in order to establish a
precise description of a surface’s orientation—that way, we can be more precise about what we mean by “tilt
angle”. The conventional process is not to describe the plane of the surface (as we’ve done so far), but instead to
specify the direction of a fixed vector perpendicular to the plane of the surface—the so-called “normal vector” for
the surface.

A given surface, no matter what its
orientation, will always have a well-defined
normal direction (two, actually), and by
specifying the direction of that normal, we
can unambiguously describe the orientation
of the surface in space (at least, to within

an overall 180° rotation, as the first and last

A surface and its normal, in various orientations
% sketches at left would suggest).

So, for a given surface, we will first establish a normal unit vector 7. [Making it a unit vector means that it is
dimensionless (i.e. no units) and has a magnitude of exactly “1”—all this vector does is point in the direction normal
to the surface.] The orientation of the surface relative to the field will then be fully specified if we describe the
orientation of 7 relative to the field. In particular, let us presume that 0 represents the angle between the field
direction and the normal unit vector. (Be careful here! Not all 0’s in all problems are actually the “angle between
E and 7”—sometimes the symbol 0 can be used to represent some other angle!) When 0 = 0°, the normal unit
vector is parallel to the field, and the surface is perpendicular to the field. This means that the actual area A of the
surface is also the “cross-sectional” area A, and the problem reduces to the situation we've already worked:

®=|E|-AL
On the other hand, when the normal unit vector is perpendicular to the field (i.e. *
0 = 90°), we will find that the plane of the surface is parallel to the field, and the N I N

flux will be zero. This is the case seen before, where the field lines are only
“skimming along” the surface, but not crossing from one side to the other:
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For angles between these two limits, the best way to proceed
is to figure out what the “reduced footprint” of the surface
would be, by finding its projection onto a plane L to the field
(aka its cross-sectional projection). If A represents the full
area, then the cross section will be A, and a little bit of basic
geometry tells us that:

A = Acosf

> (Note how this expression satisfies the 0 = 0° and 0 = 90°
limits...)




Thus, for a flat sheet whose normal makes an angle 0 with the field direction, we can extend the applicability of our
earlier definition by writing:

® = |E|- Acosf

Here, A is the actual area of the surface. Once again, we must recognize that if the electric field magnitude varies
from point to point on the surface, this simple product must be replaced by an integral, in which the surface is
broken into small subregions and the flux through each subregion is computed separately before adding the results to
get the net flux.

Interlude — Area as a vector:

At this stage of things, it is useful to introduce a new notation that summarizes and simplifies what we’ve developed
so far. This new notation will also make it easier for us to iron out a technique for solving “worst case” flux
scenarios (i.e. cases where none of the simplifying assumptions we’ve use so far are valid).

Note that a flat surface has two distinguishing characteristics that we are interested n
in: its area A and its orientation (which can be described by specifying 7). We

can combine these two properties into a single physical quantity, which we will call

the area vector for the surface:
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A=An
By specifying the magnitude (area) and direction (normal unit vector) of the area
vector, we are simply making an “all in one” description of the surface. Of course,
as far as 72 is concerned, all we are really interested in is the angle that it makes relative to the field direction, since
our ultimate goal is to write an expression for flux. In terms of the area vector, the flux expression becomes:

® = |E||A] cos

We then recognize that this expression for flux can be expressed as a dot product of the two vectors E and A:

d=FE-A
Given this definition, we have to confront one “sticky” issue: dot products can yield negative values (if the angle
between the two vectors is greater than 90°) —what does negative flux mean?

Before we try to answer this, let’s back up for a bit. Near the middle of one choice for 71

Page Four, we noted in passing that specifying the normal unit vector for a

surface gave its orientation, fo within an overall 180° rotation. (You may

have puzzled about what was meant by this statement. You are about to

find out...) It should be clear that, given some particular surface, there are ©
always two possible choices for the direction of the normal unit

vector—one for each of the perpendicular directions away from it, as

shown at right. Which should we choose? It doesn’t matter—but once

we’ve made the choice, we have to stick with it! (We will see later that

in certain circumstances, there is a convention for choosing the direction

of in.)
E Note that in choosing a normal unit vector, we are E
s7 | establishing a “preferred direction” for crossing = S
N 4 ; the surface: you can either cross “with n” or AN >
\\\X/ E “against n’”. With that understanding, we should ﬁ
N \ Z | recognize that in the dot product, positive values Z
\\; ; occur when E crosses the surface in the preferre_q [ ;
> | direction, while negative values occur when E >
FL cross surface in “preferred | CTOSS€S the surface in the opposite sense to the | gy cross against the “preferred
direction” : Positive Flux preferred direction. direction” : Negative Flux




Worst case scenarios—advanced flux calculations:
Finally, we have to recognize that there are still two remaining situations that might “gum up” our work:

1. The electric field may vary in direction (as well as magnitude) over the surface in question.
(An example of this might be a flat sheet in the neighborhood of a single point charge.)

2. The surface may curve in such a way that there is no single, well-defined “normal direction”.

3. Both cases 1 and 2 may hold. (OK, that’s three situations. So, sue me...)
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Problem #1: Field direction Problem 2: Surface is curved; Problem 3: Ick!
varies over the surface A varies from point to point

The nifty thing is: we have already worked out the tactic that will resolve all three of these problems! Recall that
when the field magnitude varied from place to place, we fixed things by breaking the surface into tiny regions A,
on which the field magnitude was locally uniform. While we’re at it, we might as well also require that these tiny
subregions of the surface are so small that:

*  The field direction is locally uniform. That is, the region is so small that the field direction doesn’t
noticeably change as we move around the subregion.

*  The surface itself is locally flat. That is, we are zooming in so close that we don’t see the curvature,
and the tiny region under consideration has a well-defined local normal vector 7 and a local area dA.

Ultimately, we will be integrating, which means that the subregions will be shrunk down to infinitesimal size. When
that happens we are able to satisfy all “tinyness conditions™ at once—infinitesimal subregions are always locally
flat, and always have a locally uniform field magnitude and a locally uniform field direction.

The process of shrinking to infinitesimal subregions, and converting the sum of the fluxes into a flux integral, will
provide us with the most general possible definition of flux—but keep in mind that the process of evaluating the
integral (which may be very easy, or very nasty, depending on circumstances) is still really just a mathematical way
of counting ‘“number of field lines”, in a manner that everyone can agree upon.

So, here’s how we put it together to get the most general expression for flux. At a generic point on the surface, we
imagine a tiny subregion which is pointlike, and find an expression for its area dA and the normal unit vector 7 to
the surface at that point. This allows us to construct the area vector dA = dA#n. We likewise find an expression
for the electricfield E at that point, and then write the local flux through that small subregion as:

dd = FE - dA

Then the total flux is obtained by summing over all subregions, which becomes an integral over the surface:

@tot:/dcp:/ﬁ-d/f

As a final note: such surface integration may seem like a daunting task—and in it’s most general application, it is.
However, for this class we will most often deal with circumstances where the flux integral simplifies to something
“trivially easy” (Sounds foo good to be true, doesn’t it?). At this stage, you would do well to review section 27.3 in
more detail —particularly Tactics Box 27.1 (p. 859), which does a good job of itemizing those situations where the
flux integral is “trivially easy”.




