PHYS 2212 Lab Exercise 02: Charge Distributions & Integration

PRELIMINARY MATERIAL TO BE READ BEFORE LAB PERIOD

Density Functions: When we consider a charge distribution consisting of very many point charges, it is
convenient to introduce the idea of a charge density, which will allow us to treat the distribution as being
continuous. A “purist” might object to this, pointing out that ultimately, at the atomic scale, all distributions are
composed of individual point charges (protons and electrons). However, if we view the distribution at a
macroscopic scale, even a region that we would consider to be pointlike—e.g., a box of length 0.1 mm on a
side—is of vast size in comparison to atomic scales, and would consist of tens of millions of individual point
charges. In that context, treating a general charge distribution as being continuous is not all that unrealistic.

A continuous charge density function, then, is a means of describing how a certain amount of charge is spread
out over some particular region. Depending upon the type of region that is being spread over, we have three
different “categories” of density functions:

e If an amount of charge is spread throughout a three-dimension volume, we have a volume charge
density, conventionally denoted by the symbol “p”. (This is, perhaps, suggestive of the familiar mass
density that describes distributions of matter.) A volume charge density describes the amount of
charge found charge per unit volume examined. Thus, if you were to state that the volume density at

some point were 15 MC/rnm3, you would essentially be asserting that a tiny box around that point
(again, lets say, of dimension 0.1 mm on a side) would contain a total charge of:

(15 x 1070 C/mm>) x (0.1 mm)° = 15 nC.

e If an amount of charge is spread over some two-dimensional surface, we have a surface charge
density, and will use the symbol 1 to represent such a distribution. It is important to recognize that we
are treating such a distribution as having “zero thickness”—even though, technically, there is some
non-zero thickness to a typical “n”. Provided, however, that the thickness “¢” is very small compared
to the area of the surface, we can neglect ¢ and treat the distribution as if it were truly “2D”. Surface
charge density is then calculated in a manner comparable to volume charge density. In this case,

however, we measure the amount of charge found per unit area of the surface examined.

Keep in mind, as well, that there is no a priori reason why the surface in question has to be flar—it is
completely possible to deal with a situation where charge is spread over the curved surface of a sphere
or cylinder.

e If charge is spread along a line (i.e. a one-dimensional system), we have a linear charge density. Just
as with surface densities, there is no absolute requirement that the “line” be straight. We can distribute
charge along circular arcs or even weird, squiggly lines. Linear charge densities are suitable for
describing wires and threads—essentially, any object whose cross-sectional area is tiny in comparison
to its length. Linear charge densities are represented by the symbol “A”, and measure the amount of
charge found per unit of length examined.

It is important to recognize the distinction between a distribution that is uniform, and one that is non-uniform.
In a uniform distribution, the charge density takes the same value at every point within the distribution. This
means that p (or n or A) has a fixed value. Moreover, in this situation we can think of the density as describing
either the local value for the “charge-to-volume ratio” (i.e, the amount of charge per unit volume found in a tiny
region surrounding some particular point), or else as a global “charge-to-volume ratio” (i.e. an overall
description of the object as a whole, in terms of the fotal amount of charge and the tofal volume of the object).
However, if a distribution is non-uniform, the density does nof have a fixed value—it is a function that
varies from one place to another, and we write: p = p(r). In such a case, the value of p at some particular
position r describes only the local properties of the distribution, and tells us nothing about the distribution as a
whole. Likewise, if we know the fotal charge and tofal volume of a non-uniform distribution, the ratio Q. / Vi,

would tell us rothing about the local density at any particular point within the distribution.
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In order to put the ideas of charge density to use, we should first recognize that in the majority of situations that
we will confront, calculating electrostatic effects requires us to deal with charges on a pointlike basis. For
example, if we want to use Coulomb’s Law to calculate a force or a field strength, we would have to break the
distribution up into tiny pointlike charges, compute the force or field due to each charge separately, and then
add up the results via superposition. Keep in mind, though that a “pointlike” charge must have tiny
dimensions—so we must break our distribution into infinitesimally small subregions, in order to proceed. We
would then need to know the amount of charge in any given subregion, and that’s where the idea of a density
function “comes to the rescue”:

e If we have a volume distribution, then our “tiny regions” are infinitesimal volume elements dV. For
some particular region, found at the position r (i.e. a tiny sub-volume which contains the point r), the
amount of charge found within the subregion will be the local charge density multiplied by the volume
of the region:

dQ = p(r)-dV

Here, we’re using “dQ” to represent the charge because it is only an infinitesimal sub-unit of the total
charge on the entire object. Note very clearly that we must use the local value for the density; the
“global density” of the object as a whole will not suffice. This distinction isn’t necessary, of course, if
the distribution is uniform, but students commonly overlook this requirement for non-uniform
distributions!

¢ For surface or linear distributions, the logical process is the same; we need only recognize that in these
cases, the tiny subregions are either areas (dA for flat areas, dS for curved surfaces) or lengths (dx , dy,
or dz for straight-line segments along the coordinate axes, ds or d¢ for arc-lengths along a curved
distribution). So, in these cases, we would write something like;

dQ =n(r)-dA
dQ = Nr)-dl

One can then proceed with the steps of calculating an expression for the desired electrostatic quantity (e.g. force
or field), and then using the principle of superposition to sum over all the pointlike charges. However, since we
have broken our distribution into sub-regions of infinitesimal size, we will have to have an infinite number of
subregions in order to “cover” the whole object! In that case, the conventional notion of “summation” has to be
replaced by the process of integration. In the context of this course, “integration” is a computational
mechanism for determining the value of a sum in the limit where an infinitely large number of
infinitesimally small things are being added.

Charge Density < Total Charge: Let us now put the conceptual ideas of the preceding section to use.
Suppose that we have some volume charge density, and we wish to know how much total charge it contains. If

and only if the distribution is uniform, we could determine Q.. by simple multiplication:

Qiot =P Vit (onlyif p = constant throughout the object!)

More often than not, we will be faced with a non-uniform distribution, and will have to try something else. We
break the object up into subregions AV;, compute the charge in each subregion AQ; = p;AV,, and sum. Of
course, for this to work, we must make sure that the subregions are locally small enough that the value of p does
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not vary noticeably over region “i”—and that means that the regions should really be infinitesimals dV :

N
= 1i AN VA 1
Qtot Aim Z; pi - AV; / p(r)dV

In order for this integration to succeed, it is imperative that you recognize that one cannot simply integrate the
density over the coordinates; for the process to work, one must first be able to write an expression for the
differential volume dV in terms of the coordinates. Thus, a key step in the analytical process is to think
carefully about the fype of volume region which is most suitable for a given charge distribution, and to analyze
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the geometry of that region in order to get a proper expression for the differential volume (or differential area,
or differential length, as the case may be.

As a brief example: suppose we were given a thin rod along (char fﬁ on subregion)
the x—axis, with a non-uniform linear charge density A(x), (x)-dx
extending from x =0 to x = L. In this case, the “suitable (location of subregion)

subregion” would be a tiny sub-length along the x—axis. X—>
Since it’s “tiny”, we’ll call it an infinitesimal dx, and if we — I</ |—>
wanted to know the total charge on the thread, we would add x=0 dx x=L

the charge on various subregions: (width of subregion)

L
Qtot/ Az) dx

0

Note that the correct result cannot be obtained any other way —for example, by multiplying A(L)- L, or by trying
to be clever and multiplying AM(L/2)- L.

Field Calculations: A similar process can be applied in order to determine the electric field due to a
distribution of charge. However, we must recognize that the summation in this case is not simply over the
charge, but over the field vectors that are created by each of the pointlike charges in the distribution. That is,

for a given distribution, we pick a particular field point (i.e. an

empty point in space at which we are trying to find E,.). We (field point)

then break the distribution into pointlike subregions, with P

infinitesimal charges dQ = p(r) - dV. Keep in mind that r 0 O ry)

-

. % ! . o (source point) r(xy). "
represents a generic point which is somewhere inside the xy Y
distribution of charge—(the so-called “source point”). The \ e

electric field due to just this one source point is: ' (Charge on source point)

p(x.y)-dv

dQ) .

1E = k—*
e TZT
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We’ve used “dE” to represent the field because it is only an infinitesimal sub-portion of the net field. In the
denominator, “r” represents the distance from the source point to the field point, and is (in general) a quantity
that depends upon the location of the source point (as well as the chosen field point). Thus, r is something that
must be expressed as a function of the source point coordinates. Similarly, dQ should be expressed as: (density
function evaluated at source point coordinates) times (infinitesimal size of region containing source point), and
the unit vector 7" —which represents “unit vector at the field point which points directly away from the source
point” —should be expressed as a function of the source point coordinates. All these steps require careful
geometry —including some basic vector analysis (for 7). The end result is (hopefully) an algebraic expression
for the (vector) electric field contribution dE due to a generic source point, expressed entirely as a function of
source point coordinates. The process of summing all field contributions is then one of integrating a function
over the volume of the distribution—albeit, a vector-valued function:

Epet = /dE /kd?T
. . r

Generally speaking, the only thing that is 100% guaranteed to factor out of the integral is the electrostatic
constant “k”!! As a final cautionary note regarding this integration process: anyone who attempts to work such
a problem without a carefully drawn sketch has little or no chance of getting the geometry right!



