\square Nine-digit GT ID

signature

Summer 2019
PHYS 2211 M
Test 02

- Put nothing other than your name and nine-digit GT ID in the blocks above. Print clearly so that OCR software can properly identify you. Sign your name on the line immediately below your printed name.
- Free-response problems are numbered I-III. Show all your work clearly, including all

Test Form:

2A

 steps and logic. Write darkly. Blue or black ink is recommended. Do not make any erasures in your free-response work. Cross out anything you do not want evaluated. Box your answer.- Multiple-choice questions are numbered 1-6. For each, select the answer most nearly correct, circle it on yourtest, and fill the bubble for your answer on this front page.
- Initial the odd pages in the top margin, in case the pages of your quiz get separated.
- If the page for a free-response problem has insufficient space for your work, ask a proctor for an additional sheet. If you wish this work to be evaluated, put your name on the sheet and make a note on the problem page, so graders know where to find your work. Place any added pages at the back of your test, when submitting your exam.
- You may use a calculator that cannot store letters, but no other aids or electronic devices.
- Scores will be posted when your test has been graded. Test grades become final when the next is given.

Fill in bubbles for your Multiple Choice answers darkly and neatly.

$$
\begin{aligned}
& 1 \text { (a) (b) (c) (d) (C) } \\
& 2 \text { (a) (b) (c) (d) (C) } \\
& 3 \text { (a) (b) (c) (d) (e) } \\
& 4 \text { (a) (b) (c) (d) (e) } \\
& 5 \text { (a) (b) (c) (d) (e) } \\
& 6 \text { (a) (b) (c) (d) () }
\end{aligned}
$$

Form 2A
Extra workspace:

The following problem will be hand-graded. Show all supporting work for this problem.
[I] (20 points) A performance sportcar is driving on a flat circular track of radius R. (Professional driver on closed course; do not try this at home.) Starting from rest, the car maintains a steady tangential acceleration of magnitude $a_{\mathrm{t}}=1 / 2 \mathrm{~g}$. How far around the track will the car have travelled, at the moment the car (and driver) experience an overall acceleration of magnitude $2 g$? Express your answer in both radians and revolutions.

Form 2A

The following problem will be hand-graded. Show all supporting work for this problem.
[II] (20 points) A block rests on a hinged board that can rotate through any angle, from horizontal $\left(\theta=0^{\circ}\right)$ to vertical $\left(\theta=90^{\circ}\right)$. You find that the block will remain in equilibrium on the board for any angle up to $\theta_{c}=36.9^{\circ}$ (top figure), but for any angle greater than this critical value, the block will begin to slip down the board. The board is then rotated to the vertical orientation and locked into place. What horizontal applied force P (bottom figure) would be required to hold the block
 against the board, without slipping?
(i) Draw a free body diagram for the top figure, and apply the $2^{\text {nd }}$ Law to determine a numerical value for the coefficient of friction.
(ii) Draw a free body diagram for the bottom figure, and apply the $2^{\text {nd }}$ Law to to determine P, expressed as a multiple of the gravitational force $m g$.
The quality and clarity of your diagrams will be graded!

The following problem will be hand-graded. Show all supporting work for this problem.
[III] (20 points) Identical twins Lars and Sven are mountain-climbers, tethered together as they descend a steep, snowy 30° slope. Suddenly, Lars hits an icy patch with effectively zero friction, causing both climbers to begin slipping downslope. The coefficient of kinetic friction between Sven and the snow is $\mu_{k}=0.25$.

Draw free body diagrams for both skiers, and use the $2^{\text {nd }}$ and $3^{\text {rd }}$ Laws to determine the tention in the tether. Express your answer as a multiple of the climbers' (identical) true weights, $m g$.

The quality and clarity of your diagrams will be graded!

Form 2A

The next two questions involve the following situation:
A person having true weight $W_{\mathrm{o}}=200 \mathrm{lb}$ steps into an express elevator and stands on a scale. Starting from rest, the elevator accelerates to its crusing speed v_{c} in a time T. While this is happening, the scale reads an apparent weight of 220 lb for the passenger. After the acceleration ends, the elevator coasts at constant speed.

Question value 4 points
(1) What will be the passenger's apparent weight while coasting?
(a) 220 lb
(b) Exactly zero.
(c) 240 lb
(d) 180 lb
(e) 200 lb

Question value 4 points
(2) As the elevator nears its destination, it begins to deccelerate, slowing from speed v_{c} to a stop in time $T / 2$. What will the scale read during the decceleration?
(a) 210 lb
(b) 180 lb
(c) 190 lb
(d) 240 lb
(e) 160 lb

Question value 8 points

(3) Two blocks A and B are used in an experiment. Each block is subjected to forces of different magnitude and the resulting accelerations are measured and plotted in the graph at right. If blocks A and B are glued together and the same experiment is done on the glued pair, where would the graph of $a-$ vs $-F$ lie?
(a) Somewhere above line B, in region I.
(b) Somewhere in region II, but not necessarily along line C.
(c) It must be exactly along line C.
(d) Somewhere below line A, in region III.
(e) There is insufficient information to determine where the
 graph would be.

Question value 8 points
(4) A locomotive engine (mass M) pushes a group of railroad cars (total mass $9 M$). The engine generates a propulsive force P, while the cars generate a total rolling friction force f. The train starts from rest, and gradually pickes up speed. What is the magnitude of the direct contact force C, with which the locomotive pushes forward on the cars?
(a) $C=P-0.9 f$
(b) $C=0.9 P+0.1 f$
(c) $C=0.9 P-f$
(d) $C=0.1 P+0.9 f$
(e) $C=0.9 P$

Question value 8 points
(5) When a cannonball is dropped from the top of a very high cliff, drag forces will cause it to accelerate until it reaches a final terminal speed v_{T} as it falls. Suppose instead that the cannonball is fired straight downwards with an initial speed that is twice the terminal speed of the dropped ball (i.e. $v_{\mathrm{i}}=2 v_{\mathrm{T}}$). What will be the initial acceleration of the cannonball at the moment it leaves the barrel of the cannon?
(a) $3 g$, upward
(b) $3 g$, downward
(c) g, upward
(d) g, downward
(e) $2 g$, upward

Question value 8 points

(6) You are a performer in Cirque du Soleil, standing on a board that lies across a high wire, while simultaneously balancing a basket filled with poisonous snakes on your head. Your weight is W and the weight of the snake-filled basket is w. According to the third law, what force is paired with the upward normal force by the board on your feet?
(a) A downward gravitational force on your whole body equal to your weight W.
(b) A downward gravitational force on your whole body equal to the sum of the weights, $W+w$.
(b) A downward normal force by your feet on the board.
(d) A downward normal force by the basket o' snakes on your head.
(e) A downward gravitational force on your whole body, equal only to the added basket weight, w.

